
International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

7

Issues Identified in the Software Process due to Barriers
found during Eliciting Requirements on Agile Software

Projects: Insights from India

N.Ganesh

Research Scholar, Faculty of
Computer Science and

Engineering, Anna University,
Coimbatore, India

 S.Thangasamy

Dean, Research and
Development, Kumaraguru

College of Technology,
Coimbatore, India

ABSTRACT

Nowadays, many of the Agile based project development

teams are distributed geographically across the globe. The

teams are divided into onshore and offshore that work

together to achieve on a common target. The teams in turn

work in small iterations to minimize the effect of change in

software requirements and at the same time developing

regular communication between them. However different

factors such as physical distance and lack of proper

communication between the onshore and offshore teams

become a hurdle between them leading to misunderstandings

about software requirements. Though there are many

advanced way of communication like video conferencing,

voice chatting is available, it certainly has several

disadvantages in getting the task completed. This paper gives

an insight about these challenges faced in many of the

software industries and it would allow different stakeholders

within agile based onshore /offshore setting to better

understand these challenges in eliciting their requirements.

General Terms

This article can be classified under the problems faced and the

solutions achieved in the software life cycle management.

Keywords

Agile, Requirements elicitation, knowledge sharing, onshore /

offshore

1. INTRODUCTION
The major challenge found for better understanding of

Software requirements is due to lack of communication

between the onshore and offshore site distributed teams.

Shorter iterations at the offshore site require more

communication with the onshore site. The language problem

seems to exist only when both the onshore and offshore site

teams who are non-English speakers communicate in English.

Regular long distance meetings would help in better

understanding of software requirements. Previous domain and

product knowledge is helpful in better understanding of

software requirements.

In developing a software, the requirement gathering ways are

broadly classified into two groups as internal (team members)

and external (customers, partners) to the software project. In

such a type of projects, Agile is the best answer where you

work in small iterations and deliver working software at the

end of iteration. The diverse collection of customers along

with tough competition with its competitors puts a lot of

pressure on the software requirements of a particular software

product. Agile methodologies are very helpful in this regard

as it welcomes changes, especially late changes [1].

The core concept in agile development is that the team can be

increasingly effective when the time and cost of moving

information and decisions between people is reduced [1]. For

this purpose the development team should be co-located

thereby increasing communication and there should be a close

collaboration with customer and other stakeholders. Another

aspect of agile is decrease in documentation and relying only

on just enough documentation. Within global software

development the activities are divided into two areas: onshore

activities and offshore activities [2].One of the vital

underlying fact why the Software projects are deployed at

offshore is that by taking advantage of cheaper labour,

facilities and talented workforce [2].

The biggest advantage of offshore development is reduced

cost of development [3]. The significant challenge of offshore

development is hurdles in communication between the

onshore and offshore team. It is more difficult for the client

and onshore team to communicate with the offshore project

team because of increase in distance that leads to difficulty in

face to face meeting (one of primary principles of agile) and

also differences in time zones. Both of which can increase the

probability of developing the incorrect functionality as

misunderstandings and interpretations occur over software

requirements [4]. Some of the main issues and challenges in

global software development are: inadequate communication,

knowledge management, cultural diversity, time differences

[5].

The utilization of agile projects in offshore projects could help

achieve the advantages of agility (flexibility) and off shoring

(maximize cost savings). However agile extremely focuses on

communication and feedback thereby demanding a

development team that is physically co-located and in close

collaboration with its customers or other important

stakeholders. It is not easily achievable in distributed setting

[4].

2. RELATED WORKS: Literature study

2.1 What is Agility?
Agility is dynamic, context-specific, aggressively change

embracing, and growth-oriented. Agility is dynamic, context-

specific, aggressively change embracing, and growth-oriented.

The core concept in agile is quick response to change [4]. Any

methodology should be quicker and cheaper to implement

changes in requirements where you cannot lock or freeze

requirements in earlier stages [6]. The focus of agile is always

on the team and concludes that to effectively respond to

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

8

change one have to reduce the cost of moving information

between people along with reduction in the elapsed time

between making a decision to seeing the outcomes of that

decision [4].

Table 1: Agile manifesto versus waterfall model

2.2 Why go for Agile?
The core concept in agile development is that the team can

be increasingly effective when the time and cost of moving

information and decisions between people is reduced [4]. For

this purpose the development team should be co-located

thereby increasing communication [3]. For example in case of

XP if the development team (mainly programmers) is

scattered in two rooms it creates problems for successfully

implementing it [7]. Also included are close collaboration

with customer and other stakeholders. Another aspect of agile

is decrease in documentation and relying only on just enough

documentation [3]. In software development there is a

continuous flow of requirements. The aspect of welcoming

late changing of software requirements in agile [4] makes it

suitable for the demanding needs of software development.

2.3 Welcoming Change
In waterfall software development model the software

requirements are frozen before moving to the next stage and

following the same freezing principle when commencing to

the next stage. Agile on the other hand allows the freedom of

making changes in software requirements specification even

late during the software development [6]. Satisfying the

customer at delivery of the software and not during the initial

phases has now taken precedence [8]. It means that

requirements change during different phases of software

development and thus requires flexibility and accommodating

change. Requirements cannot be specified absolutely correctly

in the specifications.

Iterative development of agile methodologies helps in

giving a better understanding of software requirements by the

project team. During early iterations changes in software

requirements occur that will require its reassessment. These

early iterations will remove the ambiguities in software

requirements and will minimize the chances of implementing

software requirements that will prove costly when changing

them later in the software development lifecycle [9].

2.4 Why do Software Projects fail?
According to [10] software projects fail due to a number of

reasons. Some of which are mentioned below:

i. Not clearly communicating the requirements

ii. Business problem is not solved by the requirements

iii. Changing nature of requirements

iv. Incorrect requirements

v. Committing resources before fully understating the

requirements

For these issues to resolve in context of agile methods it

requires regular communication with end-user and other

stakeholders involved in the project [4]. It is important

because there is less documentation and more face to face

communication. This communication between different

stakeholders brings them to a common understanding of

software requirements. It becomes more important in case of

market driven software products where you have many

stakeholders and there is the issue of bringing them on a

common understanding about software requirements. These

different stakeholders have different backgrounds and thus

interpret requirements in different ways which requires

regular communication and feedback meetings. The technical

knowledge of these stakeholders may not be at the same level

making face-to-face communications more important for

example a software requirement that comes from marketing

department is more abstract and when is made concrete or

understandable to the development team, its meaning and

context may change. Thus marketing department then have to

be brought into the communication process to confirm that

these software requirements which are now in a new shape

have maintained the same meaning. This activity cannot be

performed without communicating with them. In case the

technical team does not communicate this early on then it can

create difficulties for the development team to accommodate

these changes later on. By difficulties it is meant that increase

in development time and resources spent on the product.

2.5 Requirements Engineering Process
A requirements engineering is a structured set of activities

which are followed to derive, validate and maintain a systems

requirements document. Process activities include

requirements elicitation, requirements analysis and

negotiation and requirements validation.

2.5.1 Requirements Elicitation
Requirements Elicitation is about finding requirements

through consultation and communication with different

stakeholders, studying already existing system documents and

using domain knowledge. In other words it also identifies

what the system should do and not so. Particular questions

that need to be answered are: what activities come inside the

scope of the system and that had to be put as software

requirements and what activities are outside the scope of the

system.

2.5.2 Requirements analysis and negotiation
According to [11] requirements analysis and negotiation

are “activities which aim to discover problems with the

system requirements and reach agreement on changes to

satisfy all system stakeholders”. The main goal of

requirements analysis is to identify possible conflicts,

overlaps, dependencies, inconsistencies or omissions when

software requirements are elicited and specified. It is an

ongoing process in which all the stakeholders come together

to arrive on a concrete set of requirements [12]. Some analysis

of software requirements also takes place during the

elicitation phase. This is the case when problems with

software requirements can be identified as soon as they are

expressed. However the extended analysis takes place after

the initial version of software requirements document

produced [11]. Requirements negotiation can also be included

during the analysis phase. Different stakeholders give

importance to a software requirement from their own

perspective. They also have different levels of power over the

decisions being made about particular requirements [11].

There are different ways to analyze software requirements for

Agile Waterfall

Individuals and

interactions

Working software

Customer collaboration

Responding to change

processes and tools

comprehensive

documentation contract

negotiation Follows a

plan

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

9

example prototypes, mock-ups and test cases that can be used

for analyzing and refining the requirements. One of the most

important activities of this analysis phase is to ensure that all

stake holders from customers to engineers and developers

have the same understanding of software requirements. In

agile based development the customer is involved in all the

phases of iteration.

2.5.3 Requirements validation
Validation is performed to approve that the software

requirements are acceptable to be implemented. During this

validation phase conflicts between stakeholders are also

resolved [11]. It is important to note that execution of

software requirements validation process should be done

appropriately to save costs that are going to occur later on

during the implementation of incorrect requirements.

Requirements reviews and inspections can be used to validate

software requirements. In reviews a group of people read and

analyze requirements, identify any problems and issues and

then to find a solution for them [11]. In agile methodologies

requirements validation is performed through regular review

meetings and acceptance tests. Customers can use the

developed software and determine which functionality is

implemented and what further needs to be developed. It

allows the whole team including the customer to know

strength and weaknesses of the design [3].

2.5.4 Requirements Management
A basic requirements management should contain the

following activities [11]:

i. Change management of agreed requirements.

ii. Management of interrelationships between those

requirements

iii. Management of dependencies between requirements

document and other documents produced during the overall

software engineering process.

Requirements traceability is a vital activity within

requirements management without which it cannot be

performed effectively. This traceability information is used to

identify what other requirements are/might be affected by

making these propose changes [11]. In agile methodologies

software requirements are written on index cards or

maintained in a product backlog or feature list. The main

difference with traditional requirements management is the

level of detail in which the software requirements are

specified [3].

3. RESEARCH APPROACH
Case studies are used to a larger extent by social science as

both a research and a teaching vehicle, especially in IS

(information systems) research. The research is based on an

interpretive case studies conducted in select Indian

organizations engaged in Information Technology (IT)

outsourcing to global clients. The case study research strategy

is useful for investigating phenomena that are under-

researched, complex or difficult to extract from their

underlying contexts. We have adopted an interpretive

approach since it is through the multiple, inter-subjective

views of actors working within the IT cultural enclave

environments that concept, theories, and rich insights about

the phenomena can emerge. The study was exploratory in

nature with the aim to teach from the case study participants

about the context of the phenomenon to provide high quality

software development as given in agile manifesto. This

context dependent knowledge can prove useful in gaining

expertise of understanding a practical Indian setting, an

outcome relevant to the research objectives. There are three

types of studies using the case study method namely intrinsic

case study: researcher wants a better understanding of the

particular case; instrumental case study: a particular instance

is examined to provide insight into an issue or refinement of

theory; Collective case study: Researchers may jointly study a

number of case studies in order to inquire into the

phenomenon, population, or general condition. Since it is a

phenomenon of the usage of scrum in software developmental

projects, we have adopted the instrumental case study

approach to provide better insights into the issue.

4. EXPERIMENTAL RESULTS

4.1 CASE DESCRIPTION – THE

BACKGROUND
The case study is framed based on my involvement in an agile

software project that has been developed in a software

company located in Chennai, India. The software company

which I am referring to is one of the pioneers in handling

projects on image and video optimization. As an extension of

this work the Software Team has developed logic and is

developing the beta version of the product to compress the

image and retrieve it back without any loss on the original

image. They are also leaders in creating solutions for

correcting the online competitive examinations. The company

has its offices in various locations across India and has its

global operations in countries like USA, Japan and

Philippines. As per the policies of the Organization, the

company name and the Project names are kept to be

anonymous.

4.1.1 THE ANALYSIS TEAM
The schema below shows the members in the analysis

team.

The duty of the business analyst is to forecast the market and

to bring in business. He is also responsible for getting the

functional requirements. The requirement analyst converts the

functional requirements in to the technical requirements. In

our company, the delivery head acts as the requirement

analyst. He allocates the person and schedules the tasks for

Analysis team

Business

Analyst

Requirements

analyst

Does Market Forecast

and sheds out functional

requirements

Classifies functional

requirements into

technical requirements

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

10

the employees and also responsible for fixing the deadlines

for frequent deliveries.

The major difference between a traditional requirement

analyst and the agile requirement analyst is that the latter

insist on continuous delivery. When continuous delivery is

given, continuous feedback from the customer is mandatory.

When continuous delivery and continuous feedback go hand

in hand, then continuous integration should be done by the

developers in a team. Each team should have atleast three to

four integration per day. This is the way we work in our

Organizational team.

4.1.2 THE PROJECT TEAM
The below illustration shows the Agile cross-functional

development team includes a product manager, developmental

team, Quality Assurance team, User Experience team, and a

project manager.

The project manager supervises the release schedule and

helps resolve logistical issues, but otherwise does not

participate in the development process. The developmental

team, consisting of three to eight developers, implements and

delivers to QA a feature or set of features per Sprint based on

a prioritized backlog determined by product management. QA

tests the features in that Sprint and identifies issues. If any

issues are found, engineering team fixes the features in the

current Sprint. The sprints that they adopt are two weeks in

length, with seven of the ten working days of the Sprint

dedicated to implementation by engineering and the

remaining three days to Quality Assurance for testing.

4.1.3 THE TEAM
The cross-functional development team for the project

consisted of the product manager, five development

engineers, two QA engineers and two members of the User

Experience team. I was one of the members of the

requirement analyst team, who shares the requirements

obtained from the client to the cross functional development

team, exclusively to the user experience team. The User

Experience team was responsible for user research and

testing. Two other members were responsible for design and

implementation, and regularly participated in Sprint planning

and daily Scrums. All members of the team were centrally

located in the corporate office at Chennai, India.

4.1.4 USER EXPERIENCE PARTICIPATION
As the requirements and target audience were only partially

defined during the initial stages, the product management

engaged the User Experience team to research and gather user

requirements. The research results obtained enabled the

project team to identify the product feature set in preparation

for the start of development. The results of user research and

testing were instrumental in prioritizing the product backlog.

User Experience involvement in the Sprints was a key factor

in successfully focusing the cross-functional development

team’s efforts on the requirements of the users.

4.1.5 USAGE OF SPRINT ON THE PROJECT
The engineering team and product management were

invited to view user testing sessions, discuss findings and

review preliminary designs during the sprint session. This

helped the cross-functional team to share their ideas, and

enabled the engineering team to prepare for the next Sprint.

At the end of the Sprint, final designs and specifications were

reviewed with the cross-functional team, and then handed off

to engineering for development. User Experience participation

in the daily Scrums was a crucial factor in the development

process. The daily scrum became the convenient forum to

share the results of user research and testing, and to clarify

any misinterpretations of the designs.

4.1.6 SPRINT ZERO
Sprint zero takes place prior to the start of development.

Sprint zero is used by the cross-functional team to review

requirements and create initial user stories based on the

backlog items. I (the first author of this article) made a

knowledge transfer of the requirements to my team which

utilized sprint zero to better understand the users’ needs, to

explore their context and identify their goals for the project as

a whole. The data obtained from the initial user research effort

is used to negotiate the priorities of the first Sprint and to

communicate the users’ expectations to the cross functional

team. User scenarios and the features were developed in

subsequent Sprints. Designs for features engineering plans to

implement in the first Sprint are also created and tested.

Task of Sprint Zero

Gathering

Requirements

Identifying and

prioritizing the

product backlog

Project Team

Product Manager

Quality Assurance

team

User experience

Team

Developmental

team

Project Manager

Requirement

analyst

Customer

response /

feedback

Requirements

Develop

prototype

Design and build

based on the

prototype

Sprint Release

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

11

The remaining sprints are used in refining the earlier and

the subsequent sprints.

4.1.7 Reasons for offshore software development

in agile projects
The main reasons for our Organization to move offshore

are to reduce cost of development due to lower wages, skilled

labor and round the clock development [5]. The different

reasons for moving offshore are given below:

i. Improvement in Telecommunications

ii. Favourable Government policies

iii. Skilled and very cheap man power

iv. Less cost of setting offshore site

In convention the offshore projects prefer plan driven

approach. Detail requirements and design specification are

sent to offshore site where they can develop the software. This

approach is useful to minimize the communication hiccups

that are a basic product of offshore development. In offshore

setting the principles of agile can be successfully executed.

Most of the agile principles are based on giving space for

decision making to the software development team. This will

create more confidence particularly in the offshore team. Also

more thinking will be done at offshore bringing in more

understanding about the software requirements increasing

ownership of the software product. Also more communication

takes place between the onshore and offshore teams resulting

in much better job performance [13]. The Agile project puts

great focus on communication with the end-user or customer.

This communication can help in developing trust amongst

both the onshore and offshore teams [13].

5. CHALLENGES IN UNDERSTANDING

SOFTWARE REQUIREMENTS IN

AGILE PROJECTS
The major challenge in understanding the software

requirements lies through effective communication and

knowledge sharing, domain knowledge, less software

requirements documentation. A detailed explanation of the

above said features are as follows:

5.1 Effective communication and

knowledge sharing
Agile puts more focus on team effort where the teams are

physically co-located. But when teams are geographically

distributed especially with large time zone differences then it

becomes difficult to co-ordinate. The primary reason is that

they can no longer talk face to face every day. Although

telephones and teleconferencing allow communicating

synchronously but still it takes longer to resolve an issue when

teams are at a distance from each other [15]. A common

problem in communication is that team at one location is

waiting for a response from the team at other location creating

misunderstandings and irritation with each other [14].

As there is less focus on documentation and more focus on

communication then more of the knowledge is un-

documented. Communication is not the same as physically co-

located teams compared to on and offshore teams therefore

knowledge sharing becomes more difficult. Although any

kind of software requirements specification acts as a mean of

knowledge sharing but not everyone in the team will clearly

understand the specification and will have questions to pose.

5.2 Domain knowledge and product

knowledge
Most of the development is done offshore and the role of

offshore team has much greater importance. According to

agile principles every team member has a say and a much

greater role than the waterfall model [4]. In agile there is less

focus on documentation and more on developing code

therefore a lot of knowledge that is developed walks out with

the person who leaves the company, which is said to be a

major flaw in the methodology.

5.3 Less software requirements

documentation
Less documentation in agile puts more focus on the real

implementation of software requirements. This reduces the

time spent on software requirements specification that can be

utilized in doing software development. But less

documentation puts more on communication within and

between agile teams. If the team is physically co-located

questions regarding the software requirements could be easily

resolved. Due to less detail of software requirements, it would

be difficult for the quality assurance team to perform major

software testing at the offshore site.

5.4 Challenges in conducting reviews
Yet another challenge that we faced in our Organization is

that in not getting the clients to review early builds. Thus

offshore team has to wait for a long time to get a response

from the client. Transfer of tacit knowledge from the business

(which is onshore) to the offshore team which acted as a

challenge as details of this tacit knowledge that is not present

in the software requirements specification. Validation of

software requirements by the offshore team due to change in

business priorities becomes a challenge. It could be possibly

that not knowing the full business context leads to difficulties

in software requirements validation by the offshore team.

6. CONCLUSION AND SOLUTION
This article focused on the challenges caused due to lack of

communication, language problem, cultural differences and

difficulties in knowledge sharing due to physical distance.

The solution of the article is to have regular

communication between the onshore and offshore site to make

transfer of knowledge easier. This regular communication is

useful to resolve any type of conflicts and misunderstandings

about software requirements. In shorter iterations lack of

communication is bigger problem than in longer iterations due

to physical distance between on and offshore teams and lack

of time to implement software requirements. As a solution

either the iteration duration could be increased or software

requirements could be decreased for iteration to deal with lack

of communication and difficulties in knowledge sharing.

7. ACKNOWLEDGMENTS
My sincere thanks to my Organization who gave me an

opportunity to enrich my software knowledge without which I

would have not written this article.

8. REFERENCES
[1]. Tony Gorschek, Claus Wohlin, “Requirements

Abstraction Model”, Springer-Verlag London, dated: 26-

11-2005.

[2]. Muhammad Faisal Nisar, Tahir Hameed, “Agile

development handling offshore Software Development

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

12

issues”, Multitopic conference proceedings of INMIC

2004. 8th International, dated: 2004-Dec-24-26.

[3]. Frauke Paetsch, Dr. Armin Eberlein, Dr. Frank Maurer,

“Requirements Engineering and Agile Software

Development”, Proceedings of the Twelfth IEEE

International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises

(WETICE„03), dated: 2003.

[4]. Alistair Cockburn, Jim Highsmith, “Agile Software

Development: The People Factor”, Software

Management, dated: 2004.

[5]. Ernest Ferguson, Clifton Kussmaul, Daniel D.

McCracken, Mary Ann Robbert, “Offshore Outsourcing:

Current Conditions & Diagnosis”, Technical Symposium

on Computer Science Education, Proceedings of the 35th

SIGCSE Technical symposium on Computer Science

Education, Norfolk, Virginia, USA, pp: 330-331, ACM

Press New York, Ny, USA, dated: 2004.

[6]. Renee McCauley, “Agile Development Methods Poised

to Upset Status Quo”, Vol. 3, Iss. 4, ACM SIGCSE

Bulletin, dated: Dec-2001

[7]. Kent Beck, “Embracing change with extreme

programming”, Computer Journal, Vol. 32, Iss. 10, pp:

70-77, IEEE, dated: 1999.

[8]. Jim Highsmith, Alistair Cockburn, “Agile Software

Development: The Business of Innovation”, Computer,

Vol. 34, Iss. 9, pp: 190-127, IEEE, dated: Sep-2001

[9]. Phillip g. Armour, “Agile…and Offshore”,

Communications of the ACM, Vol. 50, Iss. 1, ACM

Press New York, NY, USA, dated: Jan-2007.

[10]. Lowell Lindstrom, Ron Jeffries, “Extreme Programming

and Agile Software Development Methodologies”, Vol.

21, Iss. 3, pp: 41-52, Information Systems Management,

dated: 2004.

[11]. Gerald Kotonya, Ian Sommerville, “Requirements

Engineering Processes and Techniques”, John Wiley &

Sons Ltd, England, dated: 1998

[12]. Colin Potts, Kenji Takahashi, Annie I. Anton, “Inquiry-

Based Requirements Analysis”, Vol. 11, Iss. 2, pp: 21-

32, IEEE Software, dated: March-1994

[13]. Ajay Danait, “Agile Offshore Techniques – A Case

Study”, Proceedings of Agile Development Conference,

pp: 214-217, IEEE, dated: 24-29-Jul-2005

[14]. Keith Braithwaite, Tim Joyce, “XP Expanded:

Distributed Extreme Programming”, Springer-Verlag,

pp: 180-188, Berlin, dated: 2005.

[15]. Joachim Sauer, “Agile practices in offshore outsourcing

– an analysis of published experiences”, Proceedings of

the 29th Information Systems Research Seminar in

Scandinavia, Helsingborg, Denmark, dated: Aug-12-15-

2006

[16]. Marjanovic 2009. “Inside Agile Processes: A

Practitioner's Perspective”, 42nd Hawaii International

Conference on system Sciences, 2009 (HICSS '09). 05 –

08 Jan 2009, Sydney, Australia, IEEE, Pp. 01 – 10.

 [17]. Bin Xu (2009), “Towards High Quality Software

Development with Extreme Programming methodology:

Practices from real software projects, IEEE Xplore

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4755313
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4755313

