
International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

8

Design and Implementation of Scalable, Fully Distributed

Web Crawler for a Web Search Engine

M. Sunil Kumar
Associate Professor

C R Engineering College, Tirupati
Research Scholar

S V University
Tirupati

P.Neelima
Assistant Professor

C R Engineering College, Tirupati
Tirupati

ABSTRACT

The Web is a context in which traditional Information

Retrieval methods are challenged. Given the volume of the

Web and its speed of change, the coverage of modern web

search engines is relatively small. Search engines attempt to

crawl the web exhaustively with crawler for new pages, and to

keep track of changes made to pages visited earlier. The

centralized design of crawlers introduces limitations in the

design of search engines. It has been recognized that as the size

of the web grows, it is imperative to parallelize the crawling

process. Contents other then standard documents (Multimedia

content and Databases etc) also makes searching harder since

these contents are not visible to the traditional crawlers. Most

of the sites stores and retrieves data from backend databases

which are not accessible to the crawlers. This results in the

problem of hidden web. This paper proposes and implements

DCrawler, a scalable, fully distributed web crawler. The main

features of this crawler are platform independence,

decentralization of tasks, a very effective assignment function

for partitioning the domain to crawl, and the ability to

cooperate with web servers. By improving the cooperation

between web server and crawler, the most recent and updates

results can be obtained from the search engine. A new model

and architecture for a Web crawler that tightly integrates the

crawler with the rest of the search engine is designed first. The

development and implementation are discussed in detail.

Simple tests with distributed web crawlers successfully show

that the Dcrawler performs better then traditional centralized

crawlers. The mutual performance gain increases as more

crawlers are added.

Keywords: web search engines, crawling, software

architecture

1. INTRODUCTION:

1.1 Web search engines and crawlers
1.1.1 Information Retrieval (IR)

Information Retrieval is the area of computer science

concerned with retrieving information about a subject from a

collection of data objects. This is not the same as Data

Retrieval, which in the context of documents consists mainly in

determining which documents of a collection contain the

keywords of a user query. Information Retrieval deals with

satisfying a user need. Although there was an important body

of Information Retrieval techniques published before the

invention of the World Wide Web, here are unique

characteristics of the Web that made them unsuitable or

insufficient.

The low cost of publishing in the "open Web" is a

key part of its success, but implies that searching information

on the Web will always be inherently more difficult then

searching information in traditional, closed repositories.

1.1.2 Web search and Web crawling
The typical design of search engines is a

"cascade", in which a Web crawler creates a collection which is

indexed and searched. Most of the designs of search engines

consider the Web crawler as just a first stage in Web search,

with little feedback from the ranking algorithms to the crawling

process. This is a cascade model, in which operations are

executed in strict order: first crawling, then indexing, and then

searching.

Figure 0.1 Structure of Web search Engine
An aim of this approach is to provide the

crawler with access to all the information about the collection

to guide the crawling process effectively. This can be taken one

step further, as there are tools available for dealing with all the

possible interactions between the modules of a search engine,

1.2 Working of a crawler
A web crawler is an automatic web object

retrieval system that exploits the web's dense link structure. It

has two primary goals, to seek out new web objects, and to

observe changes in previously-discovered web objects (web-

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

9

event detection).The basic web crawler algorithm has not

changed since the World Wide Web Wanderer (the first

reported web crawler) was designed in 1993. Almost all

crawlers follow some variant of the basic web-traversal

algorithm. Crawlers must continue to deal with issues of

scalability as the World-Wide Web expands. How does one

efficiently and effectively crawl the current set of almost 2.5

billion publicly index-able web pages if crawlers are limited by

crawling speed and difficulty in predicting web-events? The

speed at which a crawler can traverse the web is limited by a

number of factors, including the bandwidth of the crawler and

the latency of the network.

 Predicting when a web object is going to

change, helps to limit the amount of useless polling done by a

crawler to determine if it has been updated since the last visit.

The fewer resources wasted by a crawler doing useless polls,

the more that can be delegated to the task of locating new

information. In the end, crawlers are going to be relying upon

communicating with others and being instances of themselves

(in the parallel sense), This arises the need for autonomously

cooperative sharing web crawlers - crawlers that can make

decisions on their own, and communicate with others when the

need arises.

2.REQUIRMENTS AND ASSUMPTIONS
It has been recognized that as the size of the

web grows, it becomes imperative to parallelize the crawling

process, in order to finish downloading pages in a reasonable

amount of time (Junghoo 2002). Nonetheless, little published

work actually investigates the fundamental issues underlying

the parallelization of the different tasks involved with the

crawling process (Sergey 1998, Alan 2001). For example,

some features of Google have been presented in (Sergey 1998),

where the crawling mechanism is described as a two stage

process: a URL server distributes individual URLs to multiple

crawlers, which download web pages in parallel; the crawlers

then send the downloaded pages to a central indexer, on which

links are extracted and sent via the URL server to the crawlers.

In contrast, when designing DCrawler, all the

tasks of web crawlers were decentralized, with obvious

advantages in terms of scalability and fault tolerance.

Essential features of DCrawler are

 Platform independence;

 Full distribution of every task

 Tolerance to failures:

 Scalability.

Following sections describes the design goals

and assumptions which have guided the architectural choices of

DCrawler. These features are the offspring of a well defined

design goal: fault tolerance and full distribution (lack of any

centralized control). For instance, while there are several

reasonable ways to partition the domain to be crawled if one

assume the presence of a central server, it becomes harder to

find an assignment of URLs to different agents which is fully

distributed, does not require too much coordination, and allow

to cope with failures.

2.1 Design Goals

2.1.1 Full Distribution
In order to achieve significant advantages in

terms of programming, deployment, and debugging, a parallel

and distributed crawler should be composed by identically

programmed agents, distinguished by a unique identifier only.

This has a fundamental consequence: each task must be

performed in a fully distributed fashion, that is, no central

coordinator can exist.

Also no assumption concerning the location of

the agents is made, and this implies that latency can become

and issue, so that communication should be minimized to

reduce it.

2.1.2 Balanced locally computable

assignment.
The distribution of URLs to agents is an important issue,

crucially related to the efficiency of the distributed crawling

process.

Following goals three goals are identified as important:

 At any time, each URL should be assigned to a

specific agent, which is solely responsible for it.

 For any given URL, the knowledge of its responsible

agent should be locally available. In other words,

every agent should have the capability to compute

the identifier of the agent responsible for a URL,

without communicating.

 The distribution of URLs should be balanced, that is,

each agent should be responsible for approximately

the same number of URLs.

2.1.3 Scalability
The number of pages crawled per second per

agent should be (almost) independent of the number of agents.

In other words, the throughput should grow linearly with the

number of agents.

2.1.4 Platform independence
The crawler should be able to work among

different platforms and in heterogeneous networks with

different architecture. This is the reason for choosing java for

implementation of Drawler.

2.1.5 Cooperation with web server
The crawler should have the ability to

cooperate with the web server during the crawling process. The

network traffic generated by the crawlers can be considerably

reduced using this mechanism.

2.1.6 Politeness
A parallel crawler should never try to fetch

more than one page at a time from a given host. Congestion

that could arise because of multiple threads crawling single

host could be avoided with this technique.

2.1.7 Fault tolerance
 A distributed crawler should continue to work

under crash faults, that is, when some agents abruptly die. No

behavior can be assumed in the presence of this kind of crash,

except that the faulty agent stops communicating; in particular,

one cannot prescribe any action to a crashing agent, or recover

its state afterwards (note that this is different from milder

assumptions, as for instance saying that the state of a faulty

agent can be recovered. In the latter case, one can try to

"mend" the crawler's global state by analyzing the state of the

crashed agent). When an agent crashes, the remaining agents

should continue to satisfy the "Balanced locally computable

assignment" requirement: this means, in particular, that URLs

will have to be redistributed.

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

10

This has two important consequences:

 It is not possible to assume that URLs are statically

distributed.

 Since the "Balanced locally computable assignment"

requirement must be satisfied at any time, it is not

reasonable to rely on a distributed reassignment

protocol after a crash. Indeed, during the protocol the

requirement would be violated.

3. THE BASIC DESIGN

3.1.1 Multithread architecture
DCrawler is composed of several agents that

autonomously coordinate their behavior in such a way that

each of them scans its share of the web. An agent performs its

task by running several threads, each dedicated to the visit of a

single host. More precisely, each thread scans a single host

using a breadth-first visit.

Several mechanisms are used to make sure that

different threads visit different hosts at the same time, so that

each host is not overloaded by too many requests. The out links

that are not local to the given host are dispatched to the right

agent, which puts them in the queue of pages to be visited.

Thus, the overall visit of the web is breadth first, but as soon as

a new host is met, it is entirely visited (possibly with bounds on

the depth reached or on the overall number of pages), again in

a breadth-first fashion.

Figure 2.1.1.1 Single Thread in Crawler

3.1.2 Quality of Pages
More sophisticated approaches (which can take

into account suitable priorities related to URLs, such as, for

instance, their rank) can be easily implemented. However it is

worth noting that several authors have argued that breadth-first

visits tend to find high quality pages early on in the crawl.

An important advantage of per-host breadth-

first visits is that DNS requests are infrequent. Web crawlers

that use a global breadth-first strategy must work around the

high latency of DNS servers: this is usually obtained by

buffering requests through a multithreaded cache. Similarly, no

caching is needed for the robots . txt file required by the

"Robot Exclusion Standard" indeed such file can be

downloaded any time an host breadth-first visit begins.

3.1.3 Assignment of URLs
Assignment of hosts to agents takes into

accounts the mass storage resources and bandwidth available at

each agent. This is currently done by means of a single

indicator, called capacity, which acts as a weight used by the

assignment function to distribute hosts. Under certain

circumstances, each agent a gets a fraction of hosts

proportional to its capacity Ca. Note that even if the number of

URLs per host varies wildly, the distribution of URLs among

agents tends to even out during large crawls. Besides empirical

statistical reasons for this, there are also other motivations,

such as the usage of policies for bounding the maximum

number of pages crawled from a host and the maximum depth

of a visit. Such policies are necessary to avoid (possibly

malicious) web traps.

3.1.4 Failure Detector
Finally, an essential component in DCrawler is

a reliable failure detector that uses timeouts to detect crashed

agents; reliability refers to the fact that a crashed agent will

eventually be distrusted by every active agent (a property that

is usually referred to as strong completeness in the theory of

failure detectors). The failure detector is the only synchronous

component of DCrawler (i.e., the only component using

timings for its functioning); all other components interact in a

completely asynchronous way

3.2 Software Architecture

3.2.1 The overall structure
DCrawler is composed by several agents that

autonomously coordinate their behavior in such a way that

each of them scans its share of the web. The objective of the

design of this crawling architecture is to divide the crawling

task into different tasks that will be carried efficiently by

specialized modules.

Figure 2.1.1.2 Multiple agents cooperation

Figure 3.2 shows three independent crawlers,

and their cooperation logic. The seed is the starting URL list

provided to the crawler. The crawler starts from seed URLs.

The assignment module process each and every URL crawler

come across and locally computes the crawler responsible for

specific host (which is done using identifier based consistent

hashing as explained in next chapter). The URL is then given

to core crawling module.

3.2.2 The core Crawling Module
The core crawling module follows the very

basic crawling algorithm. The page related to the

corresponding URL is fetched first, which is then passed to the

HTML parsing module. The HTML parsing module extracts

different components of the web page and returns them to

crawler in turn. The extracted links are passed to assignment

module for further processing.

3.2.3 HTML Parsing
HTML parsing module analyses the web pages

fetched by the core crawling module. Apart from link

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

11

extraction, the HTML module can be used by the search engine

directly to search for specific keywords. This approach of

crawling for a specified set of pages based on constrains is

known as focused crawling.

3.2.4 Workbench Interface
The workbench is a user interface module that

provides graphical representation and statistics on the current

crawling process. This also allows to add seeds during crawler

execution and to control crawling process in real time.

3.2.5 Document Dumping
When a page is fetched, after link extraction it

should be stored in the repository. This is done using document

dumping module. The location can be in local machine or

network server. When the dumping is done in local machine,

then available capacity is also considered as a component that

forms the weight of the crawler.

4. WEB SERVER COOPERATION

SCHEMES

4.1 The assignment functions

4.1.1 Required assignment function
Let A be the set of agent identifiers (i.e.,

potential agent names), and L be the subset of living agents:

Then the assignment function have to assign hosts to agents in

L. More precisely, a function δ need to be set up in such a way

that, for each nonempty set L of alive agent, and for each host

h, delegates the responsibility of fetching h to the agent δL(h) in

L. The following properties are desirable for an assignment

function:

Balancing: Each agent should get

approximately the same number of hosts; in other words, if m

is the (total) number of hosts,

 Contravariance: The set of hosts assigned to

an agent should change in a contravariant manner with respect

to the set of alive agents across a deactivation and reactivation,

that is to say, if the number of agents grows, the portion of the

web crawled by each agent must shrink.

Contravariance has a fundamental

consequence: if a new set of agents is added, no old agent will

ever lose an assignment in favor of another old agent. This

guarantees that at any time the set of agents can be enlarged

with minimal interference with the current host assignment.

4.1.2 Existing approaches
Satisfying partially the above requirement is

not difficult: for instance, a typical approach used in non-fault-

tolerant distributed crawlers is to compute a modulo-based

hash function of the host name. This has very good balancing

properties (each agent gets approximately the same number of

hosts), and certainly can be computed locally by each agent

knowing just the set of alive agents.

But when an agent crashes, the assignment

function need to be computed again, giving however a different

result for almost all hosts. The size of the sets of hosts assigned

to each agent would grow or shrink contravariantly, but the

content of those sets would change in a completely chaotic

way. As a consequence, after a crash most pages will be stored

by an agent that should not have fetched them, and they could

mistakenly be re-fetched several times (for the same reason, a

modulo-based hash function would make it difficult to increase

the number of agents during a crawl).

Clearly, if a central coordinator is available or

if the agents can engage a kind of "resynchronization phase"

they could gather other information and use other mechanisms

to redistribute the hosts to crawl. However, shifting the fault-

tolerance problem to the resynchronization phase-faults in the

latter would be fatal.

4.1.3 Background
Although it is not completely obvious, it is not

difficult to show that contravariance implies that each possible

host induces a total order (i.e., a permutation) on A; more

precisely, a contravariant assignment is equivalent to a function

that assigns an element of SA (the symmetric group over A, i.e.,

the set of all permutations elements of A, or equivalently, the

set of all total orderings of elements of A) to each host: then,

δL(h) is computed by taking, in the permutation associated to h,

the first agent that belongs to the set L.

A simple technique to obtain a balanced,

contravariant assignment function consists in trying to generate

such permutations, for instance, using some bits extracted from

a host name to seed a (pseudo)random generator, and then

permuting randomly the set of possible agents. This solution

has the big disadvantage of running in time and space

proportional to the set of possible agents (which one wants to

keep as large as feasible). Thus, a more sophisticated approach

is needed.

4.1.4 Consistent Hashing
Recently, a new type of hashing called

consistent hashing (David 1997, David 1999) has been

proposed for the implementation of a system of distributed web

caches (a different approach to the same problem can be found

in (Robert 1993)). The idea of consistent hashing is very

simple, yet profound.

For a typical hash function, adding a bucket

(i.e., a new place in the hash table) is a catastrophic event. In

consistent hashing, instead, each bucket is replicated a fixed

number k of times, and each copy (called as a replica) is

mapped randomly on the unit circle. When key needs to be

hashed, points in the unit circle is computed in some way from

the key, and find its nearest replica: the corresponding bucket

is the required hash. Consistent hashing, which in particular

gives balancing for free. Contravariance is also easily verified.

In this case, buckets are agents, and keys are

hosts. However, if contravariance need to hold, care should be

taken, because mapping randomly the replicas to the unit circle

each time an agent is started will not work; indeed, δ would

depend not only on L, but also on the choice of the replicas.

Thus, all agents should compute the same set of replicas

corresponding to a given agent, so that, once a host is turned

into a point of the unit circle, all agents will agree on who is

responsible for that host.

4.1.5 Identifier-Seeded Consistent Hashing

Figure 2.1.1.3 Identifier seeded consistent hashing

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

12

A method to fix the set of replicas associated to

an agent and try to maintain the good randomness properties of

consistent hashing is to derive the set of replicas from a very

good random number generator seeded with the agent

identifier: this approach is called as identifier-seeded consistent

hashing. In the implementation, for the java Random number

generator library is used, which is a fast random generator.

When a new agent is started, its identifier is

used to generate the replicas for the agent. However, if during

this process a replica that is already assigned to some other

agent is generated; the new agent must be forced to choose

another identifier.

This solution might be a source of problems if

an agent goes down for a while and discovers a conflict when it

is restarted. Nonetheless, some standard probability arguments

show that with a 64-bit representation for the elements of the

unit circle there is room for 104 agents with a conflict

probability of 10-12.

Theoretical analysis of the balancing produced

by identifier-seeded consistent hashing is most difficult, if not

impossible (unless, of course, one uses the working assumption

that replicas behave as if randomly distributed). Thus,

experimental data is reported (Paolo 2001). In Figure 4.2 it is

clear that once a substantial number of hosts have been

crawled, the deviation from perfect balancing is less than 6%

for small as well as for large sets of agents when κ = 100, that

is, for 100 replicas per bucket; if κ = 200, the deviation

decreases to 4.5%.

Figure 2.1.1.4 Experimental data on identifier-seeded

consistent hashing

4.2 Web Server Coordination
The standard HTTP transaction in which a web

crawler fetches a page from a web server is shown in Figure

4.3. Note that metadata (information about the page) is

downloaded along with the data.

Figure 2.1.1.5 Standard HTTP Transaction

The cooperation schemes can be divided in two

main groups: interrupt and polling. A crawler may use one of

them or a combination of different schemas. In the interrupt

(or push) schemes, the web server begins a transaction with

the search engine whenever it is necessary. This is similar to

the relationship between the main processor and a hardware

device (network card, scanner, etc.) in a modern computer. In

the polling (or pull) schemes, the search engine periodically

requests data from the web server, based on search engine

policies.

For DCrawler a different cooperation scheme is

implemented from above, that utilizes both push and pull

schemes.The interface which is basically designed to fetch

HTML pages can be extended so that it may allow agents to

fetch contents other then HTML in secure way. With this kind

of interface two major problems in web crawling can be

solved.

 A secure interface between Database/Multimedia

content on the server and agent can be created. The

problem of invisible web/ Hidden web can be solved

with this interface.

 The server may cache the recently searched pages

and search terms. This will improve the performance

during crawling process and the collaboration

between different users searching in the web can be

achieved.

IV. CONCLUSION
 Web crawling was described in the context of

information retrieval. Although there are many studies about

web search, web crawler designs and algorithms, they are

mostly kept as business secrets, with some exceptions.

DCrawler, a fully distributed, scalable and

fault-tolerant web crawler was presented. This project dealt

with web crawling from a practical point of view. From this

point of view, a series of problems were faced during the

design and implementation of a Web crawler. DCrawler

introduces new ideas in parallel crawling, and in the domain of

crawler – web server coordination. With consistent hashing,

graceful degradation in the presence of faults and linear

scalability are made possible. The development and

deployment of DCrawler will be continued and the

performance will be tested in very large web domains.

This Web crawler can efficiently download

several million pages per day, and can be used for web search

and web characterization. Several web portals have been

downloaded and analyzed using DCrawler, extracting statistics

on HTML pages, multimedia files, Web sites and link

structure.

V. REFERENCES
[1] David Karger, Eric Lehman, Tom Leighton, Matthew

Levine, Daniel Lewin, and Rina Panigrahy. (1997)

Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the World Wide Web.

In Proc. of the 29th Annual ACM Symposium on Theory

of Computing, pages 654-663, El Paso, Texas,

[2] David Karger, Tom Leighton, Danny Lewin, and Alex

Sherman. (1999.) Web caching with consistent hashing. In

Proc. of 8th International World-Wide Web Conference,

Toronto, Canada.

[3] Demetrios Zeinalipour-Yazti and Marios Dikaiakos.

(2002) Design and implementation of a distributed

crawler and filtering processor. In Proc. ofNGITS 2002,

volume 2382 of Lecture Notes in Computer Science,

pages 58-74.

[4] Hongfei Yan, Jianyong Wang, Xiaoming Li, and Lin Guo.

(2002) Architectural design and evaluation of an efficient

Web

Crawler

Web

Server

Web

Pages

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

13

Web-crawling system. The Journal of Systems and

Software, 60(3): 185-193,.

[5] Java™ remote method invocation (RMI). http: //Java .

sun.com/products/jdk/rmi/.

[6] Marc Najork and Janet L. Wiener. (2001) Breadth-first

search crawling yields high-quality pages. In Proc. of 10th

International World Wide Web Conference, Hong Kong,

China,.

[7] Paolo Boldi, Bruno Codenotti, Massimo Santini, and

Sebastiano Vigna. (2001) Trova-tore: Towards a highly

scalable distributed web crawler. In Poster Proc. of Tenth

International World Wide Web Conference, pages 140-

141, Hong Kong, China,

[8] Robert Devine. (1993) Design and implementation of

DDH: A distributed dynamic hashing algorithm. In David

B. Lomet, editor, Proc. Foundations of Data Organization

and Algorithms, 4th International Conference, FODO'93,

volume 730 of Lecture Notes in Computer Science, pages

101-114, Chicago, Illinois, USA,. Springer-Verlag.

[9] Tushar Deepak Chandra and Sam Toueg. (1996)

Unreliable failure detectors for reliable distributed

systems. Journal of the ACM, 43(2):225-267,.

[10] Vladislav Shkapenyuk and Torsten Suel. (2002) Design

and implementation of a high-performance distributed

web crawler. In IEEE International Conference on Data

Engineering (ICDE),.

[11] L. Lamport, “Paxos made simple,” ACM SIGACT

[12] News, vol. 32, no. 4, pp. 51–58, December 2001.

[13] V. Paxson, “End-to-end routing behavior in the

[14] Internet,”ACM SICOMM Computer Communication Re-

view, vol. 35, no. 5, pp. 43–56, October 2006.

[15] A. Crespo and H. Garcia-Molina, “Semantic

[16] overlaynetworks for p2p systems,” Stanford University,

Tech. Rep. 2003-75, 2003.

[17] M. Bender, S. Michel, P. Triantafillou, G.

[18] Weikum, and C. Zimmer, “P2p content search: Give the

Web back to the people,” February 2006, international

Workshop on Peer-to-Peer Systems (IPTPS).

[19] M. Shokouhi, J. Zobel, F. Scholer, and S.

Tahaghoghi,“Capturing collection size for distributed

noncooperative retrieval,” in Proceedings of the Annual

ACM SIGIR Conference. Seattle, WA, USA: ACM

[20] Press, August 2006.

[21] L. A. Barroso, J. Dean, and U. H¨olzle, “Web search for a

planet: The Google Cluster Architecture,” IEEE Micro,

vol. 23, no. 2, pp. 22–28,Mar./Apr. 2003.

[22] A.-J. Su, D. Choffnes, A. Kuzmanovic, and F.

Bustamante, “Drafting behind Akamai travelocity-based

detouring),” in Proceedings of the ACM SIGCOMM

Conference, Pisa, Italy, September 2006, pp. 435–446.

[23] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman,

and O. Frieder, “Hourly analysis of a very large topically

categorized web query log,” in SIGIR ’04: Proceedings of

the 27th annual international ACM SI- GIR conference

on Research and development in in- formation retrieval.

New York, NY, USA: ACM Press, 2004, pp. 321–328.

[24] K. Risvik and R. Michelsen, “Search engines and web

dynamics,” Computer Networks, pp. 289–302, 2002.

[25] F. Cacheda, V. Carneiro, V. Plachouras, and I. Ounis,

“Performance analysis of distributed information retrieval

architectures using an improved network simulation

model,” Information Processing and Management, vol.

43, no. 1, pp. 204–224, 2007.

[26] W. B. Cavnar and J. M. Trenkle, “N-gram-based text

categorization,” in Proceedings of SDAIR-94, 3rd An-

nual Symposium on Document Analysis and Informa- tion

Retrieval, Las Vegas, US, 1994, pp. 161–175.

[27] G. Grefenstette, “Comparing two language identification

schemes,” in Proceedings of the 3rd interna- tional

conference on Statistical Analysis of Textual Data (JADT

1995), 1995.

V. ABOUT AUTHORS

Mr. M Sunil Kumar has completed B.Tech in Computer

Science & Information Technology from JNT University and

M.Tech in Computer Science from JNT University. Presently

he is pursuing Ph.D in Computer Science and Engineering,

S.V.University, TIRUPATI. He is currently working as

Associate Professor in the Department of CSE, Chadalwada

Ramanamma Engineering College, Tirupati, A.P. His main

research interest includes Software Engineering, Software

Architecture, Information Retrieval and Database Management

Systems.

P.Neelima has completed B.Tech in Computer Science and

Engineering from JNT University.She is currently working as

Assistsnt Professor in the Department of CSE, Chadalwada

Ramanamma Engineering College, Tirupati, A.P. Her main

research interest includes Software Engineering, Software

Architecture, Information Retrieval and Database Management

Systems.

