Most Read Research Articles


Warning: Creating default object from empty value in /var/www/html/sandbox.ijcaonline.org/public_html/modules/mod_mostread/helper.php on line 79

Warning: Creating default object from empty value in /var/www/html/sandbox.ijcaonline.org/public_html/modules/mod_mostread/helper.php on line 79

Warning: Creating default object from empty value in /var/www/html/sandbox.ijcaonline.org/public_html/modules/mod_mostread/helper.php on line 79

Warning: Creating default object from empty value in /var/www/html/sandbox.ijcaonline.org/public_html/modules/mod_mostread/helper.php on line 79

Warning: Creating default object from empty value in /var/www/html/sandbox.ijcaonline.org/public_html/modules/mod_mostread/helper.php on line 79
Call for Paper - May 2015 Edition
IJCA solicits original research papers for the May 2015 Edition. Last date of manuscript submission is April 20, 2015. Read More

Numerical Solution of Sixth-Order Differential Equations Arising in Astrophysics by Neural Network

Print
PDF
International Journal of Computer Applications
© 2014 by IJCA Journal
Volume 107 - Number 6
Year of Publication: 2014
Authors:
M. Khalid
Mariam Sultana
Faheem Zaidi
10.5120/18752-0023

M Khalid, Mariam Sultana and Faheem Zaidi. Article: Numerical Solution of Sixth-Order Differential Equations Arising in Astrophysics by Neural Network. International Journal of Computer Applications 107(6):1-6, December 2014. Full text available. BibTeX

@article{key:article,
	author = {M. Khalid and Mariam Sultana and Faheem Zaidi},
	title = {Article: Numerical Solution of Sixth-Order Differential Equations Arising in Astrophysics by Neural Network},
	journal = {International Journal of Computer Applications},
	year = {2014},
	volume = {107},
	number = {6},
	pages = {1-6},
	month = {December},
	note = {Full text available}
}

Abstract

In the current paper, a neural network method to solve sixth-order differential equations and their boundary conditions has been presented. The idea this method incorporates is to integrate knowledge about the differential equation and its boundary conditions into neural networks and the training sets. Neural networks are being used incessantly to solve all kinds of problems hailing a wide range of disciplines. Several examples are given to illustrate the efficiency and implementation of the Neural Network method.

References

  • Schalkoff, R. J. (1997) Artificial Neural Networks. McGraw-Hill, New York.
  • Picton, P. (2000) Neural Networks. 2nd ed. Palgrave, Great Britain.
  • Rosenblatt, F. (1957) The perceptron - a perceiving and recognizing automation. Comell Aeronautical Laboratory, Report 85–460.
  • Boutayeb, A. & Twizell, E. (1992) Numerical methods for the solution of special sixth-order boundary value problems. International Journal of Computer Mathematics,45. pp 207-233
  • Twizell, E. & Boutayeb, E. (1990) Numerical methods for the solution of special and general sixth-order boundary value problems, with applications to Benard layer eigenvalue problems. Proceedings of the Royal Socity London Series A. 431(1883). pp 433-450
  • Baldwin, P. (1987) Asymptotic estimates of the eigenvalues of a sixth-order boundary-value problem obtained by using global phase-integral methods. Philosophical Transactions of the Royal Society of London Series A, 322(1566). pp 281-305
  • Siddiqi, S. S. & Twizell, E. H. (1996) Spline solutions of linear sixth-order boundary-value problems. International Journal of Computer Mathematics, 60(3-4). pp 295-304
  • El-Gamel, M. , Cannon, J. R. & Zayed, A. I. (2004) Sinc- Galerkin method for solving linear sixth-order boundaryvalue problems. Mathematics of Computation, 73(247). pp 1325-1343
  • Agarwal, R. P. (1986) Boundary Value Problems for Higher Order Differential Equations. World Scientific Publishing, Singapore
  • Shen, J. (1994) Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM Journal on Scientific Computing, 15(6). pp 1489-1505
  • Doha, E. H. & Bhrawy, A. H. (2006) Efficient spectral- Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials. Numerical Algorithms, 42(2). pp 137-164
  • Doha, E. H. & Bhrawy, A. H. (2008) Efficient spectral- Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Applied Numerical Mathematics, 58(8). pp 1224-1244
  • Doha, E. H. & Bhrawy, A. H. (2009) A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations. Numerical Methods for Partial Differential Equations, 25(3). pp 712-739
  • Doha, E. H. , Bhrawy, A. H. & Abd-Elhameed, W. M. (2009) Jacobi spectral Galerkin method for elliptic Neumann problems. Numerical Algorithms, 50(1). pp 67-91
  • Doha, E. H. , Bhrawy, A. H. & Hafez, R. M. (2011) A Jacobi- Jacobi dual-Petrov-Galerkin method for third- and fifthorder differential equations. Mathematical and Computer Modelling, 53(9-10). pp 1820-1832
  • Doha, E. H. , Bhrawy, A. H. & Hafez, R. M. (2011) A Jacobi dual-Petrov-Galerkin method for solving some odd-order ordinary differential equations. Abstract and Applied Analysis, Artical ID 947230, 21 pages
  • Bhrawy, A. H. & Abd-Elhameed, W. M. (2011) New algorithm for the numerical solutions of nonlinear thirdorder differential equations using Jacobi-Gauss collocation method. Mathematical Problems in Engineering, Article ID 837218, 14 pages
  • Doha, E. H. , Bhrawy, A. H. & Saker, M. A. (2011) Integrals of Bernstein polynomials: an application for the solution of high even-order differential equations. Applied Mathematics Letters, 24(4). pp 559-565
  • Doha, E. H. , Bhrawy, A. H. & Saker, M. A. (2011) On the derivatives of Bernstein polynomials: an application for the solution of high even-order differential equations. Boundary Value Problem, Artical ID 829543, 16 pages
  • Loghmani, G. B. & Ahmadinia, M. (2007) Numerical solution of sixth order boundary value problems with sixth degree B-spline functions. Applied Mathematics and Computation, 186(2—). pp 992-999
  • Siddiqi, S. S. & Akram, G. (2008) Septic spline solutions of sixth-order boundary value problems. Journal of Computational and Applied Mathematics, 215(1). pp 288-301
  • Wazwaz, A. (2001) The numerical solution of sixth-order boundary value problems by the modified decomposition method. Applied Mathematics and Computation, 118(2-3). pp 311-325
  • Bhrawy, A. H. (2009) Legendre-Galerkin method for sixthorder boundary value problems. Journal of the Egyptian Mathematical Society, 17(2). pp 173-188
  • Lee. H. & Kang, I. S. (1990) Neural algorithm for solving differential equations. Journal of Computational Physics, 91(1). pp 110-131
  • Meade, A. J. & Femandez, A. A. (1994) The numerical solution of linear ordinary differential equations by feedforward neural networks. Mathematical and Computer Modelling, 19(12). pp 1-25
  • Meade, A. J. & Femandez, A. A. (1994) Solution of nonlinear ordinary differential equations by feedforward neural networks. Mathematical and Computer Modelling, 20(9). pp 19-44
  • Lagaris, I. E. , Likas, A. & Fotiadis, D. I. (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5) pp 987-1000
  • Lagaris, I. E. , Likas, A. & Papageorgiou, D. G. (2000) Neural-network methods for boundary value problems with irregular boundaries. IEEE Transactions on Neural Networks, 11(5). pp 1041-1049
  • Parisi, D. R. , Mariani, M. C. & Laborde, M. A. (2003) Solving differential equations with unsupervised neural networks. Chemical Engineering and Processing, 42(8-9). pp 715-721
  • Malek, A. & Shekari, B. (2006) Numerical solution for high order differential equations using a hybrid neural network-Optimization method. Applied Mathematics and Computation, 183(1). pp 260-271
  • Choi, B. & Lee, J. H. (2009) Comparison of generalization ability on solving differential equations using backpropagation and reformulated radial basis function networks. Neurocomputing, 73(1-3). pp 115-118
  • Yazdi, H. S. , Pakdaman, M. & Modaghegh, H. (2011) Unsupervised kernel least mean square algorithm for solving ordinary differential equations. Neurocomputing, 74(12- 13). pp 2062-2071
  • Selvaraju, N. & Samant, A. (2010) Solution of matrix Riccati differential equation for nonlinear singular system using neural networks. International Journal of Computer Applications, 29. pp 48-54
  • He, S. , Reif, K. & Unbehauen, R. (2000) Multilayer neural networks for solving a class of partial differential equations. Neural Networks, 13(3). pp 385-396
  • Kumar, M. & Yadav, N. (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Computers and Mathematics with Applications, 62(10). pp 3796-3811
  • Tsoulos, I. G. , Gavrilis, D. & Glavas, E. (2009) Solving differential equations with constructed neural networks. Neurocomputing, 72(10-12). pp 2385-2391
  • Jianyu, L. , Siwei, L, Yingjian, Q. & Yaping, H. (2003) Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Networks, 16(5-6). pp 729-734
  • Shirvany, Y. , Hayati, M. & Moradian, R. (2009) Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Applied Soft Computing Journal, 9(1). ppp 20- 29
  • Mai-Duy, N. & Tran-Cong, T. (2001) Numerical solution of differential equations using multiquadric radial basis function networks. Neural Networks, 14(2). pp 185-199
  • Leephakpreeda, T. (2002) Novel determination of differential-equation solutions: universal approximation method. Journal of Computational and Applied Mathematics, 146(2). pp 443-457
  • Franke, C. & Schaback, R. (1998) Solving partial differential equations by collocation using radial basis functions. Applied Mathematics and Computation, 93(1). pp 73-82
  • Smaoui, N. & Al-Enezi, S. (2004) Modelling the dynamics of nonlinear partial differential equations using neural networks. Journal of Computational and Applied Mathematics, 170(1). pp 27-58
  • Tsoulos, I. G. & Lagaris, I. E. (2006) Solving differential equations with genetic programming. Genetic Programming and Evolvable Machines, 7(1). pp 33-54
  • McFall, K. S. & Mahan, J. R. (2009) Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions. IEEE Transactions on Neural Networks, 20(8). pp 1221-1233
  • Hoda, S. A. & Nagla, H. A. (2011) Neural network methods for mixed boundary value problems. International Journal of Nonlinear Science, 11. pp 312-316
  • Zurada, J. M. (1994) Introduction to Artificial Neural Network. West Publishing.
  • Haykin, S. (1999) Neural Networks a Comprehensive Foundation. Prentice Hall, New York.