{tag}	{/tag}
	International Journal of Computer Applications
	© 2014 by IJCA Journal

Volume 104 - Number 2

Year of Publication: 2014

Authors:

Nesma Younes

Said M. Abdallah

M. Abdel Alim

10.5120/18172-9058

{bibtex}pxc3899058.bib{/bibtex}

Abstract

This article addresses a fuzzy logic approach to calculate the optimum minimum allowable composition difference (?) to target the minimum total annualized cost (TAC) of a mass exchange network (MEN), which is based on combining composition interval diagram (CID) with fuzzy set theory. The value of ? directly affect the TAC as a main constrain. By utilizing this decision algorithm it gives the opportunity to calculate the optimum composition difference by decision making from a wide range of assumed ?. This method is very simple and more convenient than the methods previously published; as the decision is taken without calculating TAC for every assumed ?.

Refer

ences

- Chen, C. -T. (2000). Extension of the TOPSIS for group decision making under fuzzy environment. Fuzzy sets and Systems , 1-9.
 - El-Halwagi, M. M., & Manousiouthakis, V. (1990a). Automatic synthethisof mass

exchange networks with single component targets. Chem. Eng. Science, 2813-2831.

- El-Halwagi, M. (1999). Pollution Prevention through Mass Integration: Systematic design Tools.
- El-Halwagi, M. (1997). Pollution prevention through process integration. San Diego: Academic Press.
- El-Halwagi, M., & Manousiouthakis, V. (1989). Synthesis of Mass Exchange Network. AIChE Journal, 1233-1244.
- Fábio J. J. Santos, H. A. (December 2010). Fuzzy Systems for Multicriteria Decision Making. Clei Electronic Jornal, Vol. 13, No. 3, Paper 4.
- Fraser, D., & Shenoy, U. (2004). A new method for sizing mass exchange units without the singularity of thge Kremser equation. Comp. & Chem. Eng., 2331-2335.
- Hallale, N. (2001). Mass transfer technology for pollution prevention. London: M. M. Taylor & Francis.
- M. Wagialla, El-Halwagi, M. M., & Ponce-Ortega, J. M. (2012). An integrated approach to the optimization of in-plant wastewater interception with mass and property constrains. Clean Techn Environ Policy, 257-265.
- Papalexandri, K., Pistikopoulos, E., & Floudas, C. (1994). Mass exchange networks for waste minimization: A simultaneous approach. Trans IChemE, 279-294.
- Hallale, N., & Fraser, D. (2000). Capital and total cost targets for mass exchange networks. Part 1: Simple capital cost models. Computers and Chemical Engineering, 1661 1679.
- Hallale, N., & Fraser, D. (2000). Supertargeting for Mass Exchange Network, Part I-II. Trans I Chem, 202-2016.
- Cheng-Liang Chen & Ping-Sung Hung (2005). Simultaneous synthesis of mass exchange networks for waste minimization. Elsevier, 1561–1576.

Index Terms

Computer Science

Fuzzy Systems

Keywords

Mass exchange network Fuzzy Approach Mass Integration Process synthesis Process Optimization

Multi-objective decision making

Fuzzy Approach for the Synthesis of Mass Exchange Network		